Distribution Analytics – Demand Forecast

Issues & Objectives

- A Singapore based company provide multi country mobile platform for distributed sales representatives who gets updated information on demand forecast, recommendation and target sale
- > They wanted to build appropriate models for forecast
- > All output were to be pre processed in nightly batch run and saved in a centralized database
- > A customized software for managerial decision making was also needed

Solution

- Software developed in R Shiny
- K-means and hierarchical clustering and time series forecasting methods were used
- > Batch code is developed in R with input and output link to client database.

C Challenges

- > High attrition of DSRs made it hard to collate a time series sales data
- Customer base changes between transition from one DSR to another
- > Intermittent sales data for about 30% of customers
- > Discontinued or new product SKUs with short history of sales data

171e8920	-													
TARGET AC	HIEVED	2	2:	CUSTOMI 434	ERS SERVE	D								
Sales volume														
	3000													Target lines
	1 2000 -	Г	Г	Г			Г	Г	Г	Г	Г			25 percent 75 percent target line
	1000.	L									L	L		001-02_040 007-140 011-0240 011-0240 011-0240
											L	L		
	2090	2040Z		2092			. R to Z	11402	2 0 C	10402	Dez	0.6.2	10612	

www.radixanalytics.com

Benefits

- > Batch run for a dataset of 60K transaction take less than 10 minutes producing multiple output tables
- Experiment with customer segments and view a particular subset for any discount/promotion
- > View the position of customers and the recommendation to be made
- Review the profile of DSR and extent of target achievement
- Employ Various methods and visualize actual vs forecast

Infrastructure Planning – Offshore Drilling

Issues & Objectives

- > Long term infrastructure planning over a 52 year horizon
- > Determine the sequence in which sub-sea wells should be drilled to maximize profit

Solution

- Given 140 polygons (indicated by lat/long) which ones should be drilled?
- > When should each polygon be drilled?
- > Well platforms are needed to support the drilling of wells
 - > What is the number of well platforms required? What capacity should each have? When should we commission each platform?
- Hydrocarbon flow from wells will be stored and processed at production platforms
 - > What is the number of production platforms required? What capacity should each have? When should we commission each platform?
- > It is necessary to make these choices together and not sequentially
- > Constraints
 - Number of rigs available
 - Number of polygons to be drilled in any period limited by available capacity of well platforms
 - Well flow rate in any period limited by available production capacity
- Problem modelled and solved using complex optimization techniques
- Provides a critical strategic planning tool for senior management.
- Makes possible the modelling of multiple scenarios essential in view of severe uncertainties especially in the price of oil and actual production caps of wells.

Container Repositioning for Large Indonesian Shipping Company

- Issues & Objectives
- Client large Indonesian shipping company
 - Transport regulatory authority in a South East Asian country commissioned a system to:
 - is estimated that about 20% of all containers shipped by sea and 40% of those shipped by land are empty
 - Cost of shipping empty containers could be up to 25% of operational costs
 - http://www.greenport.com/news101/Products-and-Services/reducing-empty-container-costs

- v Solution
 - Developed planning software to plan empty container movements so as to minimize shipping costs resulting in large cost savings

